EQA rondzending KRAS

Marjolijn Ligtenberg Some slides obtained from Prof. dr. E. Degueker UZ-K.U.Leuven, Belgium

Role of Scheme organizers*

- Inventarisation of adequat FFPE material:
 - Type of mutation (similar among schemes)
 - Sufficient material
 - ≥ 30% tumor cells after microdissection
 - Quality control of samples in reference lab

· Preparation and distribution of slides:

- 3 slides consecutive unstained slides/lab
- Highest and lowest slide should be comparable
- One or two spare sets
- Last set of three slides > reference lab

В

D

Role of Coordination centre Leuven

- · Coordination role between all scheme organizers and participants
- · Responsible for the harmonization of the samples
- · Responsible for all communications
- · Responsible for the website and electronic submission form
- · Data collection of the results, draft first report and overview of results
- · Logintudional research on performance

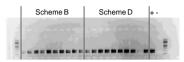
Information submitted by the laboratory to the European QA

Tabular reporting form (electronic data submission)

- · which mutations were tested
- which method was used
- % tumor cells and genotype results
 general information of the lab

Raw data of the lab results and the reports sent to treating physian of the first 3 samples

3


Data-analysis

- · Results have to be submitted within 10 workdays
 - Mutation analysis of the samples
 - Analysis of tumor percentage
 - Written reports of the first 3 samples
 - Raw data
 - List with general questions
 - Minimal requirement 2014: KRAS & NRAS codons 12,13, 59, 61, 117, 146

Genotypes of Scheme 2014-2015

Sample number	Genotype	
COLONx14.101	KRAS c.38G>A; p.Gly13Asp	
COLONx14.102	wild-type KRAS/NRAS/BRAF	
COLONx14.103	subscheme A,B, D-E NRAS c.182A>G; p.Gin81Arg subscheme C: NRAS c.181C>A; p.Gin81Lys	
COLONx14.104	wild-type KRAS/NRAS/BRAF	
COLONx14.105	subscheme A. B. C. E: KRAS c.183A-C; p.Gln61His subscheme G. H. I: KRAS c.183A-T; p.Gln61His subscheme D. E: KRAS c.182A-T; p.Gln61Leu	Dutch labs in schemes B n= 15 D n= 7
COLONx14.106	wild-type KRAS/NRAS/BRAF subscheme D: insufficient neoplastic cells (expected result: sample not contributive)	Some labs just tested normal tissue
COLONx14.107	KRAS c.35G>A; p.Gly12Asp	
COLONx14.108	BRAF c.1799T>A; p.Val600Glu	
COLONx14.109	KRAS c.436G>A; p.Ala146Thr	
COLONx14.110	wild-type KRAS/NRAS/BRAF	

DNA quality of schemes B and D

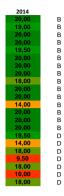
Size ladder with amplicons of 119 bp and 216 bp


All samples performed well in AmpliSeq panel analyzed on PGM

8

Techniques in Dutch labs

- Sanger seq 9
- NGS 7x (PGM & Roche Junior)
- Therascreen 2
- Sequenom 1
- HRM 1
- Pyrosequencing 1
- Taqman 1


2014- 2015	Subache me	Sample 14.101	KRAS C3800-A p.Gly13Asp		Sample 14.102	wlidtype	Sample 14.103	subscheme A.B. D-: NRAS c.182A-G; p.Gin61Arg subscheme C: NRAS c.181C>A; p.Gin61Lys		Sample 14.104	wild-type	Sample 14.105	subscheme A, B, C, F: KRAS c.183A-C; p.Gin6fillis subscheme G, H, E: KRAS c.183A-T; p.Gin6fillis subscheme D, E: KRAS c.182A-T; p.Gin6fillis
		Score	Wrong mutation found	Nomenci ature error	Score	Wrong mutation found	500	Whong mutation found	Nomenci ature entor	Score	Wrong mutation found	500	Wrong mutation found
9 408	Subsche me number	2,00			2,00		2,00			2,00		2,00	
6	В												
7	В	۰	NRAS c.38GsA: p.Gly13Asp										
9	В.												
12	В.	а		- 1					- 1			3	
14	В								У				
16	В.												
30							3						
31											PIKSCA c.1636C>A; p.Gh646Lys		
34	9								×	0	KRAS c.MG>A: p.Gly12Ser		
41	o				3		3			3		3	
40	В.	а										3	
44	В												
47	9				3		3					3	
49							3						
52	В	3		x	3		3		x			3	
23	O			xy			3		ху				
73	ь				0	KRAS c.404G>A: p.Arg135Lys							
77	D						3						
81	D	0	no mutation				0	KRAS c.35G»T; p.Gly12Val	У				
96	O				3		3			3		3	
108	О	0	no mutation									۰	no mutation
123	D											3	

Total scores Dutch labs

labs without major phenotype error and >18 will be mentioned on the website

Conclusion

- The ESP RAS EQA schemes highlight the need for continuing EQA in this field
- Still some labs do not test all required RAS codons
- EQA scheme assesses not only the laboratory's ability to obtain accurate, reliable results, but also the ability to safely interpret the results and ensure that the referring clinician has the correct information.
- The quality of the reports improved

13

Acknowledgement

Scheme co-ordinator and assistants co-ordinator E Dequeker,L Tembuyser Biomedical Quality research Unit KU Leuven, Belgium

Medical and technical expert H Van krieken and M Ligtenberg, Nijmegen, The Netherlands

S van der Borgt and Cleo Keppens, Belgium; N. Normanno, Italy

Scheme organisers

ESP for administrative support

The participating laboratories

